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Abstract

An urn sampling process is introduced involving three colors. A deran-
domization procedure is applied to the process to generate a rotor-router
model. After defining the concept of alternation between two consecutive
routers, we present an inductive proof on the alternation of two consecu-
tive rotors.

1 Introduction

The tri-color urn sampling process that we investigated had three colored balls.
By convention, the colors are white, black, and grey. If a black ball is drawn, we
replace the black ball in the urn and add two additional black balls to the urn.
If a white ball, we follow a similar procedure, this time adding two additional
white balls. If a grey ball is drawn, we replace the grey ball in the urn and add
two more balls, this time a white ball and a black ball.

Let nb and nw denote the number of black balls and white balls respectively.
The probability of drawing a particular color can be calculated as follows:

Pr(black) =
1

nb

Pr(white) =
1

nw

Pr(grey) =
1

nb + nw + 1

Here we assume that the initial configuration is one black, one grey, and one
white ball. Using this condition and the above probabilities, we can sketch a
probability tree diagram for the process. We note in passing that this process has
the Markov property since any future state of the system depends only on the
previous state. The tricolor urn process is a variant on the Pólya urn process.
Pólya’s urn differs from the tricolor process in that the initial configuration
omits the grey ball, and only one ball of the same color is added after returning
the sampled ball.
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Figure 1: Probability Tree Diagram for the Tricolor Urn Process

2 Derandomization

The urn process has a derandomized analogue which we will call the Tricolor
Board. This is the infinite set of points (i, 1, j) where i, j ∈ Z>0. We can express
the first three levels as follows:
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Figure 2: First Three Levels of the Tricolor Board

Particles are fed successively from the top of the board and descend towards
the bottom via movement rules defined locally at each router.

Definition. (Periodicity of a Router) Let n denote the periodicity of a router.
Suppose a router has the configuration (i, 1, j). Then it follows that n = i+j+1.
For instance, the router (1, 1, 3) has periodicity 5, as do all other routers at its
level in the triangular array. (Observe that along each row, i+j+1 is constant.)

Throughout the discussion, we assume the standard configuration. In this
particular derandomization, the number of black balls at a given stage of the
probability tree diagram become the numbered particles (modulo the periodic-
ity of the router) that pass down and to the left in the corresponding router.
Similarly, the number of white balls at a given stage become the numbered par-
ticles that pass down and to the right in the corresponding router. When the
grey ball is drawn during sampling, the corresponding particle in the derandom-
ization will move to the router directly below the current one.

Consider the mth particle. At the router (i, 1, j), also denoted as LiCRj ,
the mth particle will move to the router to the left if m lies in 1, ..., i (modulo
i+ j + 1), to the router in the center if m = i+ 1 (modulo i+ j + 1), and to the
router to the right if m lies in i + 2, ..., i + j (modulo i + j + 1).

3 Alternation Property

Definition. (Arrival Time) Let x1, x2, ... and y1, y2, ... be the arrival times of
consecutive particles at router X and router Y respectively. Two routers (X, Y)
are an alternation pair if x1 < y1 < x2 < y2 < ... < xn < yn < ...
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After derandomizing the Pólya urn using a standard configuration, Ein-
stein, Propp, and Holroyd (forthcoming) demonstrated that any two consecu-
tive routers in the Pólya board are an alternation pair. We considered whether
the same property held for the Tricolor Board, which was shown to be the case.

Theorem. Every two consecutive routers in the Tricolor Board are an alterna-
tion pair.

Proof. We consider first the base case where the router pairs have periodicity
n ≤ 7. This occurs in the following upper section of the triangular array:

(1,1,1)
(3,1,1) (2,1,2) (1,1,3)

(5,1,1) (4,1,2) (3,1,3) (2,1,4) (1,1,5)

Showing alternation at these levels is left as an exercise for the reader.
Suppose n > 7. Consider four consecutive routers A, B, C, and D. Let

Lk+2CRn−k−3, Lk+1CRn−k−2, LkCRn−k−1, and Lk−1CRn−k be the standard
configuration for A, B, C, and D respectively. Here 0 < k < n− 2. Consider E
and F, the two nodes below A, B, C, and D such that all the particles passing
through E and F must have first passed through A, B, C, or D. E has standard
configuration Lk+2CRn−k−1, and F has standard configuration Lk+1CRn−k.

CB D

E

A

F

Figure 3: 4x2 System of Routers

Note that both A and B may be fictitious, or both C and D may be fictitious.
This corresponds to the left and right edge cases of the array respectively.

Assume that (A, B), (B, C), and (C,D) are alternation pairs. Then (E, F)
is also an alternation pair.

Consider the particles a1, ..., an, b1, ..., bn, c1, ..., cn, and d1, ..., dn. The par-
ticles a1, ..., ak+3 go off to the side, and ak+4, ..., an go to E. The particles
b1, ..., bk+1 go off to the side, bk+2 goes to E, and bk+3, ..., bn go to F. The
particles c1, ..., ck go to E, ck+1 goes to F, and ck+2, ..., cn go off to the side.
The particles d1, ..., dk−1 go to F, and dk, ..., dn go off to the side.
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The arrivals at E are equivalent to the set {ak+4, ..., an, bk+2, c1, ..., ck}. By
the alternation of B and C, c1, ..., ck < bk+2. Similarly, by the alternation of A
and B, bk+2 < ak+4, ..., an. Through the transitivity of inequality, we obtain

c1, ..., ck < bk+2 < ak+4, ..., an.

an < bn since A and B are an alternation pair. Also, bn < cn+1 since B and
C alternate. So by transitivity, an < cn+1. We now having the following

c1, ..., ck < bk+2 < ak+4, ..., an < cn+1.

Because of the periodicity n of the routers, we can extend the inequality:

c1, ..., ck < bk+2 < ak+4, ..., an < cn+1, ....cn+k < bn+k+2 < an+k+4, ..., a2n < c2n+1, ...

This allows us to establish the following equalities (which hold modulo n):

e1 = c1, e2 = c2, ..., ek = ck

ek+1 = bk+2

ek+2 = ak+4, ..., en−2 = an, en−1 = cn+1, ...

At F the arrivals are equivalent to the set {d1, ..., dk−1, ck+1, bk+3, ..., bn}.
Since C and D alternate, d1, ..., dk−1 < ck+1. By alternation of B and C,
ck+1 < bk+3, ..., bn. Invoking transitivity we obtain

d1, ..., dk−1 < ck+1 < bk+3, ..., bn.

Using similar reasoning as above, we can show that

d1, ..., dk−1 < ck+1 < bk+3, ..., bn < dn+1, ..., dn+k−1 < cn+k+1 < bn+k+3, ..., b2n, ...

We obtain
f1 = d1, f2 = d2, ..., fk−1 = dk−1

fk = ck+1

fk+1 = bk+3, ..., fn−2 = bn, fn−1 = dn+1, ...

Having established orderings on the arrival times at the nodes E and F, we
will now relate the two inequalities to build an alternation ordering between the
arrival times of E and F. Since C and D alternate,

c1(= e1) < d1(= f1) < ... < ck−1(= ek−1) < dk−1(= fk−1) < ck(= ek).

Note that ck(= ek) < ck+1(= fk) through the definition of arrival times. By
the alternation of B and C, ck+1(= fk) < bk+2(= ek+1). By the definition of
arrival times, bk+2(= ek+1) < bk+3(= fk+1). Finally, by the alternation of A
and B, we see that bk+3(= fk+1) < ak+4(= ek+2) < ... < an−1(= en−3) <
bn−1(= fn−3) < an(= en−2) < bn(= fn−2). By the alternation of B and C,
bn(= fn−2) < cn+1(= en−1), and the cycle repeats.
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We have established the ordering

e1 < f1 < e2 < f2 < ... < en < fn < ...

and therefore E and F are an alternation pair.

To illustrate the conjecture, let A = (4, 1, 2) , B = (3, 1, 3), C = (2, 1, 4),
D = (1, 1, 5), E = (4, 1, 4), and F = (3, 1, 5). Consider the arrival times for the
nodes A, B, C, and D. For node A, a1, ..., a5 go off to the side. a6 and a7 go to
E. For node B, b1, ..., b3 go off to the side, b4 goes to node E, and b5, ..., b7 goes
to node F. For node C, c1 and c2 go to E, c3 go to F, and c4, ..., c7 goes off to the
side. Finally for node D, d1 goes to F, and d2, ..., d7 goes off to the side. All the
arrivals at E are contained in the set {c1, c2, b4, a6, a7}. Similarly, all the arrivals
at F are in the set {d1, c3, b5, b6, b7}. By the definition of arrival times, c1 < c2,
and a6 < a7. Since B and and C alternate, c2 < b4. Since A and B alternate,
b4 < a6. Applying the transitivity of inequality, c1 < c2 < b4 < a6 < a7. Using
similar reasoning, it can be shown that d1 < c3 < b5 < b6 < b7.

We have established orderings on the arrival times at the nodes E and F.
We will relate the two inequalities to build an alternation ordering between the
arrival times of E and F.

By the alternation of C and D, c1 < d1 < c2. Now by the alternation of C
and B, c2 < b2 < c3 < b3 < b4, so we can conclude that c1 < d1 < c2 < c3 < b4.
By the alternation of A and B, b4 < a5 < b5 < a6 < b6 < a7 < b7. So we obtain
that c1 < d1 < c2 < c3 < b4 < b5 < a6 < b6 < a7 < b7, the alternation ordering.
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